
Distributed Interoperable Virtual Environments

Michael Capps David Stotts Jim Duff Jim Purtilo
The University of North Carolina at Chapel Hill The University of Maryland

Chapel Hill, North Carolina, USA College Park, Maryland, USA

Abstract

This paper exhibits the use of existing software bus
technology in interconnecting Virtual-Reality Environment
(VE) software. Interoperability and application
construction from heterogeneous modules are well-explored
topics of distributed systems. A joint project using the
Polylith software bus from the University of Maryland and
VE software from the UNC graphics lab has shown the
utility of composing existing applications as opposed to
making extensive individual modifications. This paper
claims only a unique application of these methods to a new
client area. Multi-user VE walkthroughs (software
navigators) are an exciting new area in graphics software
but we see that with the rapid development of graphics
technology, next-generation applications (including multi-
user systems) are commonly redesigned from the ground
up. Here we see an excellent opportunity to examine
module reusability, with proven software, in a new
application area. As well, we hope our experiments will
likely lead to conclusions about VE programming
abstractions and produce development methods for making
easily interoperable next-generation VE applications.

Interconnecting VEs

A number of groups have been studying distributed
Virtual-Reality Environments, and have built prototype
environments and tools to help build those systems
[1,2,3,4]. Each of these systems depends on a
homogeneous data and control environment to ease the VE
development process. While they all provide a distributed
system, they are each still stand-alone in the sense that they
operate in a particular language and control domain. In the
long term, it is unlikely that the VE community will settle
on one particular language for control structures. Thus a
system such as those presented here will be necessary,
should a software engineer decide to reuse VEs built using
different control paradigms.

Development costs could be reduced by using software
engineering techniques to build reusable virtual
components. Each virtual component may operate as a
stand-alone virtual reality, but when interconnected with
other components, it becomes part of a larger virtual-reality
environment (VE). Thus each component of the VE will
need to have features that allow interconnection, while still
maintaining hardware-specific software that gives high
performance.

This paper presents prototype implementations of
control abstractions using the Polylith software bus, and
demonstrates its use in the development of shared virtual-
reality environments. As a result of this work, VE software
engineers will have a tool that facilitates reuse of virtual
components, and further, they will be able to interconnect
components in novel and creative ways that heretofore
would have required a completely new system.

Turning a VR walkthrough (a VR navigating program)
into a virtual component of a larger system can make a
simple design considerably more complicated. Now the
virtual component must listen not only to its own events,
but to events coming from other components.
Furthermore, now it must generate events for other
components, whose data requirements and event control
systems may be quite different from its own. We conclude
that any system to handle interconnection of virtual
components will also have to be built using the event based
paradigm. Note however, that although virtual components
will continue to be event based, they will not standardize
on one event control system. This is due to the multiplicity
of hardware designs discussed earlier.

Based on the need to handle multiple event types, and
maintain processing speed, we can conclude that there will
always be a need for a software entity to provide for control
transformations. That is, there must be a module
somewhere in the design that is capable of listening to a
variety of event classes, and handling them both
simultaneously and asynchronously. Thus we chose to
build an event-listener as a central intermediary, capable of
doing those transformations, and remaining highly
available to all the components in the virtual-reality
environment.

Scenarios

Consider an architectural VE built for visualizing new
ship designs; it allows an individual to construct a 3-D
model of a new ship and to "walk through" the ship,
experiencing the design from a ship-dweller's perspective.
Consider also a second VE built to simulate a group
conference; it allows a collection of individuals physically
remote from one another to experience a face-to-face
meeting in a virtual 3-D environment. Could we not
combine these two systems (without the expense and time
required to develop a separate third system) so they
interoperate, allowing a group of physically separated
people to virtually walk through a ship Òtogether,''
communicating as a group?

This scenario raises several open technical issues.
Instead of traditional (simple) data types and data structures
needing to be exchanged, we have data and behavior from
each system that must be understood by the other. For
example, in a ship walk-through system, we not only have
data that will define where walls are (physical coordinates
in 3-space), but we have other information that will tell
whether the walls are solid (realistic) or permeable (a feature
of a VE that surpasses reality). In a group conferencing
system, we not only have data telling what participants
look like, and who is currently speaking, but we also have
protocols that define the allowed interactions among
participants (like Robert's Rules of Order). When
combined, we have interesting interactions among these
behavioral constraints. For example, in a group walk-
through VE, an interaction between two group members
that is permissible in the normal conferencing environment
might be inadmissible Òinside'' the ship VE if a Òsolid''
wall stands between the two group members.

We are studying the interoperation among virtual
environments in order to discover essential principles
governing their construction and effective use. Our
approach focuses upon the control properties of interfaces
between VR applications: existing VR applications are
being examined in order to expose commonalities, and our
abstractions of VR control behavior are being specified in
terms of the software bus model of interconnection [5].
When our investigations are complete, we will not only
have produced a framework for interconnecting existing
VEs, but we will also have established guidelines to assist
future VE designers to build systems that are interoperable.

In order to illustrate the issues driving our research,
consider the problems of interconnecting two VR
applications. For example, one useful combination would
be a VR-based flight simulator and a VR-based radar
operator system used for training. What are the problems
to be overcome in integrating the two, so that pilot actions
will be reflected upon the radar operator's ``screen'', and that
the operator's analysis and directions can be used to guide
the pilot?

Data relations: One program may have its data
embedded within the code itself, but the other may
be driven by a backend database system. The very
manner by which important data values themselves
are accessed by the two programs may be very
different.

Data representation: However data values are
accessed, they may have very different representation
within the respective computer systems. The data
structures important to the pilot system may be a
polar coordinate system, geared to helping a
graphics display quickly update the image of
Òexternal'' features (e.g. other aircraft or missiles,
and ground features such as an airstrip or radar
control area) with correct perspective during flight.
Yet the radar trainer system may represent data as

records in a database, indexed by a sequence number
for fast retrieval--based upon the operator's actions,
different sequences of simulated events may thus be
portrayed on his screen. An integration of the two
systems would need to resolve such conflicts in data
representation.

Control representation: Less understood than issues
of data representation are those of control
representation. Illustrating this, the pilot system
may be designed so that images are presented to the
graphic display using data streams (a continuous
sequence of primitive data); or the pilot system may
have each event communicated to all the necessary
software components using a broadcast
communication paradigm. In contrast, the radar
trainer may consist of a centralized computer system
that accesses subsystems using a procedure call
paradigm. Interconnecting these two VR
applications will require existence of a `software
glue' that can accommodate translation between the
two paradigms; and that in turn will require a robust
control specification technology for even deciding
what the interactions should be at all.

Event mapping: With each of these systems running
separately, many ``events'' that occur are of course
simulated by the computer. But in an integrated
reality, events from one system must be translated
for presentation as stimulus to the other system.
Because most VR systems are currently built
without an architectural orientation, the mere act of
identifying which abstract events could be mapped
to another reality can be a difficult task. How the
events are named and then redirected will be an
important issue to sort out.

Time mapping: The pilot system may be a true real-
time system, in that the `simulation' time and `real'
time are intended to coincide. (Clearly, a pilot in air
combat should never see a message on his HUD
saying ``Targeting subsystem is garbage collecting
...please wait.'') In contrast, for training purposes
the radar operator may operate in a virtual time
frame, that is, long idle periods may be speeded up,
or busy periods slowed down, for purposes of
education or elucidation. Finding an abstract way to
characterize these two extremes, and then arbitrate a
common time scale between them, will be an
important task, and one affecting how we set up our
control specification framework.

Synchronization: In the same way that the time
scales between multiple VR applications must be
mated, so must the interconnection system provide
for identification and ordering of portant events.
The radar operator should not be shown any images

of a bogey in his airspace after the pilot has
successfully neutralized the threat.

The remainder of this paper explains three
interconnection experiments we have completed using
Polylith and several VEs from the UNC graphics lab. We
first present a brief overview of the Polylith system we are
using for building distributed systems.

Design Software
 Bus

Packager

run-time environment
 (auto-generated)

inter
faceA B

 spec spec

inter
face

Figure 1: Polylith Modules

Overview of Polylith

Heterogeneity is a natural result of the diversity in
problems we attempt to solve; the promise of increased
performance leads us to specialize the tools we employ.
But this diversity challenges us as well: it limits our
ability to combine tools with one another. Programs
written in different languages cannot be interfaced easily;
data produced on one computer architecture may not be
represented in a way that is usable by programs on another
architecture; and differences in operating systems may
prevent programs in a network from cooperating to solve a
problem, even though there are physical connections
between the hosts. Whenever we are inhibited from
leveraging our tools, then we spend our time re-solving old
problems instead of solving new ones.

The Polylith project demonstrates that not only can
programmers build applications for heterogeneous
computing environments, but they can do so without
giving up the apparent simplicity of homogeneous
environments. Our software organization allows
programmers to create applications whose components are
written in different languages; distribute their programs
across a network of diverse computers having different
operating systems; and vary the choice of media or

protocols used for communication among the application
components. Even though each of these activities has been
addressed separately in the past, our research unifies the
capabilities and demonstrates how all can be made available
simultaneously.

The Polylith research results are expressed in terms of
both distributed systems and software engineering. Each
choice of programming language, architecture and operating
system defines a unique software domain , e.g., the
ANSI~C language on a Vax running 4.3~BSD Unix fixes
one particular domain. A module is a source program unit
drawn from a single domain, e.g., a C function from the
above domain could constitute a module. A heterogeneous
program (or configuration) is an application built from
modules drawn from different domains.

Differences between domains have been considered in
previous research, and mechanisms have been developed to
help overcome the barriers imposed by heterogeneity.
Many previous systems provided some form of
interconnection capability [6,7,8,9]. However, their foci
were on the interconnection mechanisms themselves (such
as data coercion operations or communication protocols)
and not on the software engineering environment in which
the mechanisms would be employed to solve large scale
problems. There are some fundamental engineering
concerns that previous systems do not (and, to be fair, were
never intended to) address. Specifically, either the systems
support only one form of interconnection, or they force
their programmers to choose their interfacing mechanism at
the same time they implement each module.

We have devised an interconnection framework that
separates interface programming from intra-module
programming, while still providing access to the
mechanisms that make heterogeneous programming
possible. This model is the software bus organization
[5,10,11]. Intuitively, a software bus presents a standard
interface into which modules may be ``plugged.'' In the
same way that a hardware bus presents a standard for
electrical characteristics and signal protocols --- so boards
consistent with that standard may be plugged together --- a
software bus interconnects software components whose
internal properties may remain private as long as their
interfaces match the bus standard. It is easier to interface a
module to the bus than to all other previously developed
modules.

More specifically, a software bus is a communication
facility between separately-specified modules. The abstract
bus is a specification of the services provided by this
facility, and the bus implementation shows how those
specifications are to be realized for a particular set of
programming languages, host platforms and
communication media. Using a software bus, we can
encapsulate decisions concerning the interfacing of
modules, rather than distribute those decisions among the
application modules themselves.

The bus implementation incorporates existing
communication and interconnect mechanisms, providing a
comprehensive approach to the construction of

heterogeneous programs where more than one form of
diversity is present. A site implementor is responsible for
mapping each domain into the abstract bus specification,
and for showing how the domain's type model, data
representation, and control mechanisms relate to the bus
standard. This correspondence would only need to be
established once, and thereafter programmers would be free
to use modules from that domain within their
configurations.

Figure 1 shows the components of the Polylith bus
and their relationship to two processes in a heterogeneous
distributed system. The communications interface between
the two processes is generated by the bus from libraries of
modules specific to different communication methods,
hardware architectures, operating systems, etc. The specs
files contain information about the abstract interfaces of the
modules to be connected. The system design is a
specification detailing the network of processes desired.

We think this technology is especially well suited to
interconnection of VEs, and that it provides benefits for
engineering new VEs from existing ones. It requires
development of appropriate specs files that capture the
abstractions commonly found in different VEs. It also
requires encoding somehow the various behaviors objects
exhibit when manipulated in a VE, which will be addressed
in a later section.

Xfront to Xfront

The first virtual environment application chosen for
interconnection was Xfront, a joystick-navigated 3-d
walkthrough with generic hi-resolution mono output and an
X- interface. Xfront was chosen for the primary experiment
for a host of reasons related to suitability and availability.
First and foremost, the code is stable and in full release,
and many members of the original programming team were
still available at UNC for consultation. Second, it requires
limited resources or experience to use, as it does not use the
more complicated head-mounted display arrays and is
intended to be a simple, easy-to-use walkthrough. Lastly,
the code has a very tight event loop (approximately 15
lines) that made understanding the code structure, and
modifying it, a simple task.

Our goal for the Xfront modification and
interconnection was to examine the capabilities of the
Polylith bus system, so our modifications were chosen
with simplicity of implementation in mind. The project
decided upon was a shared-walkthrough in which two
separate Xfront processes would navigate identical virtual
worlds, and each user would be able to see the other user's
position as marked by a stick-figure object. Running more
than two processes was assumed to be a trivial exercise,
excepting only that the Xfront software requires a specific
configuration which UNC can only provide twice
simultaneously.

This model embodies a simple communication model
in which each of the two Xfront processes has a data source
and sink connected to the other process. For the sake of

simplicity, an elementary blocking read was used. In
Figure 2, we show the orchestration file, which starts the
various processes and defines the communication sources
and sinks. Each line sends or receives an array of twelve
floating-point values; this is a one-dimensional
representation of the current transformation matrix for the
userÕs eyepoint in each VE. The matrix is regenerated in the
opposite VE and used to transform the object which
represents the opposite user in the local world.

service "user_h" : {
 implementation : {binary :
"~capps/polylith/xf/scr.h
 machine : "hugin.cs.unc.edu"}
 source "publish" : {float(12)}
 sink "news" : {float(12)}
}
service "user_j" : {
 implementation : {binary :
"~capps/polylith/xf/scr.j
 machine : "jason.cs.unc.edu"}
 source "publish" : {float(12)}
 sink "news" : {float(12)}
}
orchestrate "ve" : {
 tool "user1" : "user_h"
 tool "user2" : "user_j"
 bind "user1 publish" "user2 news"
 bind "user2 publish" "user1 news"
}

Figure 2. Xfront to Xfront orchestration file.

The shared-walkthrough model necessitated only two
major changes to the code: the transformation matrix of the
user needed to be calculated and sent to the other process,
and the other userÕs eye matrix was needed to move the
stick-figure object correctly in the local process. Figure 3
shows the code modifications. These modifcations were
simply added to the beginning of XfrontÕs event loop.
Note that ÔwaitstateÕ is a counter that allows WAITSTATE
number of graphics updates between each bus update; this
was added because the communications lag is astoundingly
larger (approximately four orders of magnitude) than the
time required by the specialized UNC graphics hardware.

The Polylith system helped greatly in abstracting the
communications modifications, but unfortunately progress
was slowed because the design of Xfront and its libraries
was not particularly conducive to interconnection. It was
determined that availability of certain functions is likely
quite necessary for the smooth interconnection of VE
applications such as Xfront. For example, a function for
determining the absolute location of the userÕs eyepoint is
needed, as is a method for transforming an object to such
an absolute location by replacing its matrices rather than
incrementally multiplying. The doubly-connected Xfront
project progressed more slowly than expected because it
was necessary for us to become intimately familiar with the
code and libraries, as well as the graphics theory, to add
this functionality. In Figure 3, we see that a function for

retrieving the eyepoint already exists in the libraries, but
the matrix operations and object moves had to be added.

while (!done)
{
 XEvent event;
#ifdef BUS
 waitstate++;
 if (waitstate>WAITSTATE)
 {
 waitstate = 0;
 pg_inquire_view_matrix (eyeinfo);
 COLLAPSE_MATRIX (eyeinfo, I);
 mh_write ("publish","V12F",NULL,NULL,I);
 mh_read ("news","V12F",NULL, NULL, I);
 EXPAND_MATRIX (I, eyeinfo);
 OBJECT_MOVE (OBJECT_NAME, eyeinfo);
 }
#endif /* bus */
/* Loop below is xfront input handling. */
...

Figure 3. Eyepoint retrieval function.

Xfront to Vixen

The second VE program chosen for interconnection was
Vixen, an immersive walkthrough application that makes
use of a head-mounted display with head and hand tracking
devices. Motion is handled by buttons on a 3-d mouse,
rather than by joysticks or keyboard input. Regardless of
the different equipment for both input and output, Vixen is
built upon many of the same libraries as Xfront, so it is
similar in function and file-formats and still satisfies our
goal to connect heterogeneous VE applications.

The task to create a shared walkthrough with the two
disparate programs was much less difficult than the
previous effort. The modified version of Xfront required
absolutely no modification for this project, which showed
the value of using the Polylith system for inter-process
communication. Once a walkthrough has been modified
with Polylith message-handlers, it can be easily plugged
through the orchestration files to connect to any other
similarly-modified application. Since Vixen and Xfront
share file formats and many libraries, the specialized object-
moving and position-grabbing functions were able to be re-
used.

#Object Coordinates
#Object 1
1 0 0 0
0 1 0 0
0 0 1 100

#Object 2
1 0 0 0
0 1 0 0
0 0 1 0

Figure 4. Initial world correspondence file.

The major difficulty in sharing a world between
different walkthroughs was scaling and relative positioning

of objects in the world at startup. This was corrected by
keeping standard object starting locations in a file available
to both applications, and using the absolute object-move
function to adjust the initial virtual world accordingly
(Figure 4). Even with heterogeneous applications, and
significant differences between their design, this project
took only a fourth the time of the original dual-Xfront
connection. A subsequent dual-Vixen version took only
the time to change the name of a process in the Bus
orchestration file; the interoperability of the communication
method shone here.

 3-D
 Hub
(UNC)

 2-D
 Hub
(UMd)

1 2 n

1

1

2

2 n
n

3-D Walkers

Automatons

2-D Walkers

Figure 5. Sample instance of a MEMUD using GVixen.

Multi-environment multi-user dungeons

Our most recent experiment with the Polylith system
and VE walkthroughs was much more complex as it
involved multiple walkthroughs and many heterogeneous
non-VE processes. The project goal was to implement a
Multi-Environment Multi-User Dungeon (MEMUD), in
which many users share a dynamically-generated maze
populated with robots. Each robot figure can be any of
three types: a 2-d Walker, a 3-d Walker, or an Automaton;
however, there is no way for any robot to tell the type of
another robot.

The bus sends all users a textual description of the
maze (Figure 6); blank spaces represent walls, non-blank
the halls and rooms, and the 0 is the origin. Other data on
textures,lighting, and so forth for the 3d translation is
provided as well. The 3-d Walkers are users in the
immersive Vixen program; a modified version called
GVixen generates a three- dimensional maze complete with

stone textured walls and dirt floors (see Figure 8, at the end
of this paper, for a left-eye view). All other robots, no
matter the type, are represented as stick-figures moving
about the corridors of the maze. The 2-d Walkers are users
of an interactive two-dimensional UNIX X display; cursor
movements cause a small icon to move about the same
maze, which also is rendered from the text description.
Other robots are represented as unique icons, but no
differentiation is made between the different robot flavors.
The Automatons have the same display as 2-d Walkers, but
their motions are generated by a random engine.

This project was planned in order to make more use of
the distributed capabilities of the Polylith system, as well
as to further cooperation between the Maryland and North
Carolina sites. Therefore, the MEMUD system was
developed with two main hubs, one at each of the
universities. At UNC, the 3dhub process accepts the text-
descriptor of the maze and distributes it to the copies of
GVixen running locally (currently limited to two by
hardware only). It also collects position information for the
3-d Walkers and exchanges that information with 2dhub
running at Maryland. The Maryland hub holds the maze
description and collects location information from the
multiple 2-d Walkers and Automatons. Therefore, all
position information is communicated between universities
on only one channel, which proved to be the most efficient
method. The positions sent are only the map x,y
coordinates, and each process translates the map coordinates
into 3-d coordinates, X-display pixels, etc., as appropriate.

structure_name: gallery_0
block_size: 2
wall_texture: stone 0.00 0.00 1.00 0.505
floor_texture: dirt 0.00 0.00 0.25 0.25
ceiling_texture: stone 0.00 0.00 1.00 0.50
fog: 0 0 0 0.01 15.0

 012345678901234567890123

0 |**********0************|
1 |* *********************|
2 |* ** ** * ***|
3 |* ****** ** ***********|
4 |* ****** ** *****|
5 |* ****** ** ***********|
6 |* ****** ** ** * ***|
7 |* ****** ** ***** * ***|
8 |* ****** ** * * ***|
9 |* ****** ******** * ***|
0 |* ********** ***|
1 |******* *** ** ***|
2 |** **** ******** ** ***|
3 |** * ** * *** ******|
4 |** ** *** ****** *****|
5 |*** ** ** ****** *****|
6 | ** ** * ** *****|
7 |***** ** *************|
8 |* ** ****|
9 |***********************|

Figure 6. Map file.

Figure 5 demonstrates the configuration of the different
processes and shows the communications connections and
patterns between them. The maze description propagates
directly outward in all directions from process 2dhub.
Figure 7 is the orchestration file; notice the similarities to
Figure 2; indeed, the communicatios path between any two
modules are the same, though now all communications go
through hubs at each site to reduce network costs. Figure 7
shows a model with only a single 3-d Walker and a single
2-d Walker, for sake of brevity.

MEMUD is a truly distributed and scalable application
that connects Virtual Environment walkthroughs with two-
dimensional graphical interfaces. It demonstrates the
flexibility of the Polylith system, especially in that the
GVixen program was ready to use only after the maze-
generating modifications were made. The 3dhub translates
the GVixen user transformation into maze coordinates, so
the generic communication already in Vixen was still
usable. The scalability in number of processes is another
benefit of Polylith. Making the hubs scalable was a trivial
task, and starting additional instances of identical processes
with the bus is exactly what Polylith was designed to do.

The central hub located at Maryland.
All 2-d walkers talk through this module.
service "2dhub" : {
 implementation : {binary : "hub" }
 machine : "lens.cs.umd.edu"}
 algebra: {"HUBKIND=2DHUB:NUMWALKERS=1"}
 source "write0": {integer}
 source "write1": {integer}
 source "write_remote": {integer}
 sink "read0": {integer}
 sink "readdata0": {integer}
 sink "read_remote": {integer}
}

The central hub located at UNC
All HMD walkers talk through this module
service "hmdhub" : {
 implementation : {binary : "hub"
 machine : "hugin.cs.unc.edu"}
 algebra: {"HUBKIND=HMDHUB:NUMWALKERS=1"}
 source "write0": {integer}
 source "write_remote": {integer}
 sink "read0": {integer}
 sink "readdata0": {integer}
 sink "read_remote": {integer}
}

An HMD walker
service "hmd" : {
 implementation : {binary : "gv-glab.sh"
 machine : "hugin.cs.unc.edu"}
 source "write" : {integer}
 source "writedata" : {integer}
 sink "read" : {integer}
}

A 2-D Walker
service "2dwalker" : {
 implementation : {binary : "2dwalker" }
 machine : "lens.cs.umd.edu"}
 source "write" : {integer}
 source "writedata" : {integer}
 sink "read" : {integer}
}

orchestrate "ve" : {
 tool "2dhub"
 tool "hmdhub"
 tool "2dwalker0" : “2dwalker”
 tool "hmd0" : “hmd”
 bind "2dhub write0" "2dwalker0 read"
 bind "2dhub write_remote" "hmdhub

read_remote"
 bind "hmdhub write0" "hmd0 read"
 bind "hmdhub write_remote" "2dhub

read_remote"
 bind "hmd0 write" "hmdhub read0”
 bind “hmd0 writedata” “hmdhub readdata0”
 bind "2dwalker0 write" "2dhub read0"
 bind "2dwalker0 writedata" "2dhub readdata0"
}

Figure 7. Gvixen orchestration file.

Object attributes and interactions

If I pass you a sphere from my VE into yours, what
will happen when you drop it? Will it bounce, like a
basketball? Or will it "thud" to the floor, like a bowling
ball?

Some of the walkthroughs we have used allow users to
move objects within the virtual world; representation and
communication of such operations is not difficult, but this
begs the same collaboration issues we have seen for years in
shared editors and workspace environments. Many of the
same issues of concurrent editing might apply in multi-user
VE's as they do in 2-d shared workspaces/windows, yet we
see that many graphics researchers trying to solve these
problems without the benefit of the knowledge of current
computer-supported collaboration work. Handling such
contention in three-dimensional environments promises a
new and interesting application of established collaboration
theory.
 Allowing users to move simple objects is one issue,
but this model breaks down when the object being moved
is another user. Certain objects may resist movement, or at
least respond to it differently. For instance, slick objects
may not stop moving once let go; basketballs may bounce
if dropped from a height; donkeys might not ever move on
the first tug; and people might push back! Some very
simple and static models for specifying object behaviors
already exist in three-dimensional graphics toolkits. What
is needed is an easily-extended object-oriented model for
specifying arbitrary object interactions and behaviors. This
is the second phase of our research; it is hoped a
collaborative environment with user-extendable objects and

interactions might be useful not only as an interesting
application but as a project management tool.
 We have begun investigating the feasiblity of using
MOO technology to solve both of these problems. Object-
oriented MUDs, or Multi-User Dungeons, were created to
specify objects, their behaviors, and their interactions, and
they were designed for arbitrary dynamic programming by
users. In addtion, the original muds were designed as
collaborative spaces, and therefore concurrency controls and
other issues can be easily and well defined. Recent
progress has shown that we can feasibly attach LamdaMoo
(which, along with LPMUD, was one of the first object-
oriented MUDs) to the Polylith software bus. We hope to
use the MOO as a database to store all the information
desired about objects, including actions that are defined for
them, their locations, and their ownership, leaving us free
to study communication schemes and behavior
specification.

Conclusions

We still have considerable experimentation left to do
before we can conclusively recommend specific software
engineering methods and principles for constructing
interoperable VEs. However, our initial experiments have
led us to believe that the Polylith system is an adequate
technological framework on which to build them. Our first
interconnection (the Xfront-to-Xfront system) took 6 weeks
to complete; in this time, we were designing the
abstractions and their Polylith representations for the
entities in the Xfront VE. When we did the second
experiment (Xfront-to-Vixen), the interconnection required
1.5 weeks; many of the components designed for Xfront
were completely workable for Vixen as well. Finally, the
Vixen-to-Vixen interconnection took one afternoon. We
conclude that Polylith allows us to leverage the
specifications and abstractions from earlier work in
subsequent systems. The GVixen experiment,
interconnecting 3-D VEs with traditional 2-D graphics
systems, required about 3 weeks of effort. We expect to
find the same leverage when we work on the next mixed-
mode VE.

The experiments so far have relied on systems sharing
a common data format. However, each component system
(Xfront, Vixen, robots) was designed and implemented by a
different individual, thus giving us components with
internal data structure mismatches and control structure
mismatches, as well as disparate software libraries in use.
Subsequently experiments will deal with VEs using
different world model data formats as well.

Bibliography

1. M. Macedonia, M. Zyda, D. Pratt, D. Brutzman, and P.
Barham. Exploiting Reality with Multicast Groups: A
Network Architecture for Large-scale Virtual
Environments. VRAIS 95, p. 2-10.

2. Q. Wang, M. Green, and C. Shaw. EM - An
Environment Manager For Building Networked Virtual
Environments. VRAIS 95, p. 11 - 18.

3. G. Singh, L. Serra, W. Png, A. Wong, and H. Ng.
BrickNet: Sharing Object Behaviors on the Net. VRAIS
95, p. 19 - 25.

4. C. Carlsson and O. Hagsand. DIVE --- A Platform for
Multi-User Virtual Environments. Computers and
Graphics, p. 663 - 669, 1993.

5. J. Purtilo. The Polylith Software Bus. ACM TOPLAS,
(January 1994).

6. Barbacci, M., D. Doubleday, C. Weinstock and J.
Wing. ÒDeveloping applications for heterogeneous
machine networks: The Durra environment.Ó
Computing Systems, vol. 2, pp. 7-35.

7. D. Perry. The Inscape Environment. Proceedings of
11th International Conference on Software
Engineering, (1989), pp. 2-12.

8. R. Snodgrass. The Interface Description Language:
Definition and Use. Computer Science Press, (1989).

9. J. Wileden, et alia. Specification-level interoperability.
CACM, vol. 34, (May 1991), pp. 72-87

10. J. Purtilo, D. Reed and D. Grunwald. Environments
for prototyping parallel algorithms. Journal of Parallel
and Distributed Computing, vol. 5, (1988), pp. 421-
437.

11. J. Purtilo and P. Jalote. An environment for
developing fault tolerant software. IEEE Transactions
on Software Engineering, vol. 17, (1991), pp. 153-159.

Figure 8. The view of a maze from the Head-Mounted Display, with robots nearby

